煤炭脱硫剂氧化铁脱硫剂因其硫容大、价格价格低、可在常温下空气再生等特点而深受用户欢迎。但也存在着强度差、遇水粉化、脱硫精度不高(1ppm)等不足之处,影响了其工业应用。 针对上述情况,我公司技术人员经过几年潜心研究,开发了HYF系列新型氧化铁脱硫剂,其特点是:1、脱硫精度高:进口H2SI1000ppm时,出口H2S 0.05ppm,比普通Fe2O3的脱硫精度(1ppm)高20倍;2、反应速度快:使用空速1000-20000h-1比普通Fe2O3要高3—6倍;3、工作(透穿)硫容大:在1和2的条件下,一次性精脱H2S硫容有O2时为15—20%,是普通Fe2O3脱硫剂的3—6倍。4、强度好、耐水性好。水煮2h或浸泡30天不粉化、强度不变。5、适用温度范围广,5—90℃6、可在无O2或高CO2条件下应用。无氧时精脱H2S硫容12—15%。 该脱硫剂适用天然气、水煤气、半水煤气、空气煤气、焦炉气、变换气、CO2再生气、食品CO2、钢厂原料气、沼气、 石油化工等各种气体的精脱H2S,也可与水解504催化剂配套使用达到H2S+CO2≤0.06ppm,弥补活性炭精煤炭脱硫剂脱硫剂的不足, 使煤炭脱硫剂氧化铁脱硫剂新工艺应用更为广泛。
1 单一金属氧化物脱硫剂作为目前世界范围内研究和工业化最广泛的中高温煤炭脱硫剂煤气脱硫剂,氧化铁脱硫剂具有活性组分Fe2O3储量丰富、价格合理以及热力学性能优良、硫容大和反应活性高等优点。Lin等在脱硫剂制备过程中,以铁元素含量为考察因素,发现通过增加脱硫剂中的铁含量可以显著提高脱硫剂的性能,且煤炭脱硫剂氧化铁脱硫剂的高反应活性归因于纳米铁颗粒在脱硫剂孔隙结构中的高度分散。Mi等通过使用紫砂土作为载体制备氧化铁脱硫剂并进行了多次硫化-再生循环测试,结果表明在第一次硫化-再生循环之后,脱硫剂的硫容下降了约10%,但是在循环2次之后,硫容维持在一个固定数值不再降低,Mi等也因此认为该脱硫剂具有可被用于高温煤气脱硫的能力。Fan等采用胶晶模板法制得三维有序大孔煤炭脱硫剂氧化铁脱硫剂(图1),并且在固定床反应器上对其进行了穿透动态评价实验。表征及实验结果证实,该脱硫剂大孔结构整齐有序,三维空间相互贯通,活性组分高度分散在载体上。对比传统方法制备的脱硫剂具有比表面积大和穿透硫容高的优点。
高硫容煤炭脱硫剂氧化铁脱硫剂是以化学合成的羟基氧化铁粉为主要脱硫活性组分,添加适量的粘结剂及成型助剂加工制成,具有活性氧化铁含量高、脱硫反应速度快、穿透硫容高、脱硫精度高等特点;针对用户所需净化处理气体的工况差异,煤炭脱硫剂脱硫剂产品的抗压强度及硫容量均可调整。
煤炭脱硫剂氧化铁脱硫剂因其硫容大、价格低、可在常温下空气再生等特点而深受用户欢迎。但也存在着强度差、遇水粉化、脱硫精度不高(1ppm)等不足之处,影响了其工业应用。特点:1、脱硫精度高:进口H2SI1000ppm时,出口H2S 0.05ppm,比普通Fe2O3的脱硫精度(1ppm)高20倍;2、反应速度快:使用空速1000-20000h-1比普通Fe2O3要高3—6倍;3、工作(透穿)硫容大:在1和2的条件下,一次性精脱H2S硫容有O2时为15—20%,是普通Fe2O3脱硫剂的3—6倍。4、强度好、耐水性好。水煮2h或浸泡30天不粉化、强度不变。 5、适用温度范围广,5—90℃6、可在无O2或高CO2条件下应用。无氧时精脱H2S硫容12—15%。该脱硫剂适用天然气、水煤气、半水煤气、空气煤气、焦炉气、变换气、CO2再生气、食品CO2、钢厂原料气、沼气、石油化工等各种气体的精脱H2S,也可与水解504催化剂配套使用达到H2S+CO2≤0.06ppm,弥补活性炭精脱硫剂的不足,使煤炭脱硫剂氧化铁脱硫剂新工艺应用更为广泛。
煤炭的清洁、高效利用既会对我国的能源战略产生重要影响,也是我国经济、资源、生态可持续发展的关键手段。本文对以单一金属氧化物和复合金属氧化物为活性组分的高温煤炭脱硫剂煤气脱硫剂的研究进展进行了综述,同时,对多样化的复合金属煤炭脱硫剂脱硫剂制备、硫化及再生等方面的研究状况进行了综述。目前,我国雾霾频发,大气污染状况严重,而燃煤排放被当作造成雾霾的罪魁祸首,大量的低阶煤由于热值太低得不到充分利用。基于这一国情,有限煤炭等化石能源的高效转化与清洁利用成为我国亟待解决的重要问题。
煤炭脱硫剂氧化铁脱硫剂是广泛使用的干法脱硫剂,通过构建两种硫化的煤炭脱硫剂氧化铁脱硫剂表面在O2气氛下发生再生过程的气固模型,得到了硫化的煤炭脱硫剂氧化铁脱硫剂的再生机理。得出以下主要结论:关于H2S与氧化铁脱硫剂的脱硫过程,主要存在生成H2和生成H2O两条脱硫路径。研究表明:这两条脱硫路径是竞争性的。在脱硫过程中,煤炭脱硫剂氧化铁脱硫剂起到了两种作用:一方面,在H2S的解离过程中,煤炭脱硫剂氧化铁脱硫剂起催化剂作用并生成H2;另一方面,在生成H2O的路径中,两个氢原子夺去了煤炭脱硫剂氧化铁脱硫剂表面的O原子,同时S原子填补了被夺取的O原子所在的位置,氧化铁脱硫剂参与了反应,起到了反应物的作用。经过两条不同的脱硫路径会产生两种硫化表面,在生成H2的路径中,S原子吸附在表面的Fe顶位,我们称之为“硫吸附表面”,在生成H2O的路径中,表面的O原子的替代导致脱硫剂的降解,我们称之为“含硫表面”。无论脱硫过程生成的产物是H2还是H2O,H2S在表面的解离是脱硫过程中所经历的共同步骤。在脱硫过程中含硫表面的形成会导致H2S脱硫剂表面的解离活化能垒升高,对脱硫过程不利。在脱硫剂表面掺杂第二金属Co、Cu和Zn可以有效的降低H2S在氧化铁脱硫剂表面解离的活化能,有利于脱硫过程的进行。氧化铁表面的原子空缺会影响其脱硫性能。表面Fe空缺的存在可以有效的降低H2S解离的活化能,有利于脱硫过程的进行,而表面O空缺的存在导致表面金属活性位消失,对脱硫过程不利;O2气氛不仅可以再生硫化的脱硫剂,还可以修补脱硫剂表面的O空缺。氧化铁脱硫剂两种硫化表面都存在两条相互竞争的再生路径,且其决速步骤都是O2的解离。因此,降低O2解离。因此,降低O2解离的活化能有利于再生过程的进行。另外在O2的气氛下,表面O空缺的修补很容易。因而在O2气氛下再生,可有效的改善氧化铁脱硫剂的脱硫性能。