煤中的硫在热解和气化中产生H2S、COS、CS2等有害有毒气体。不仅腐蚀设备,而且能使后续工段的催化剂中毒,严重的污染环境和危害人体健康。煤气净化油气是中高温脱硫剂的研究已成为洁净煤技术的一个重要环节。锌基脱硫剂不仅要具有良好的脱硫能力,还要易于再生。锌基脱硫剂的再生性能较差,低温再生时候易形成ZnSO4,高温下再生化工脱硫剂氧化锌脱硫剂其比表面积降低,当温度高于600℃时,单质锌会挥发,导致化工脱硫剂氧化锌脱硫剂大量损失,在其中添加一些其它金属,能很大的提高脱硫过程的稳定性和再生性能。煤炭是世界上储量最丰富的化石燃料资源,世界化石能源资源已探明储量大约为9842亿吨、石油约为1434亿吨、天然气约为14.640万亿立方米。如果没有新能源的补充,石油和天然气将在几十年内近于枯竭,而煤炭则可供使用169年。而为了提高煤炭的燃烧发电效率,为此提出了整体煤气化联合循环发电技术。而在大量使用煤炭的情况下,脱硫剂的作用起到相当重要的地位,为我们解决煤炭燃烧所排烟气的危害。 由于氧化锌脱硫剂其脱硫活性好、精度高,在我国化学工业中通常采用氧化锌作为脱硫剂,高效固体化工脱硫剂氧化锌脱硫剂与H2S发生化学反应生成ZnS,使气态硫固化,降低了H2S的毒性。脱硫后绝大部分的氧化锌已转换为硫化锌而失去活性。
制备化工脱硫剂氧化锌脱硫剂的方法一般用到干混法、沉淀法、溶胶凝胶法。干混法是传统方法,现在用的较多的是沉淀法,而溶胶凝胶法是最近新的方法,还处于实验阶段。干混法是将氧化锌粉末和其它一些助剂、造孔剂、粘结剂通过添加适量水、有机溶剂、搅拌、研磨、机械破碎、超声波、震动等一些列粉碎手段将这些混合物均匀混合,再经过挤条机或压片机等机器挤压成片状或条状或球形等不同形状,后经干燥和焙烧即为成品。
目前国内外对化工脱硫剂脱硫剂性能的选择标准主要集中在以下几点:(1)热力学性质:脱硫剂制备材料必须是热力学性能较优的,这样有利于在需要的温度下脱除99%以上的H2S;(2)硫容:高温化工脱硫剂煤气脱硫剂应具有优良的硫吸附能力,这将有助于减少化工脱硫剂脱硫剂的用量和体积上的要求;(3)脱硫剂硫化与再生动力学:硫化与再生动力学应维持较高速率以减少硫化-再生循环所需时间;(4)稳定性:脱硫剂应具有较高的机械与热稳定性,以抵御多次硫化-再生循环中的反复与长时间高温加热;(5)可再生性:金属硫化物完全转化回到金属氧化物而不产生副产物(例如硫酸盐)的能力,一般来说,再生反应是放热的,温度控制是防止烧结的必要条件之一;(6)低成本:化工脱硫剂脱硫剂材料应以低成本获得。
高效常温化工脱硫剂氧化铁脱硫原理是用水合氧化铁常温氧化铁脱硫原理是用水合氧化铁(Fe₂O₃・H₂O)脱除H₂S,其反应为:脱硫反应::Fe₂O₃・H₂O+3H2S→Fe₂S3・H₂O+3H₂OFe₂O₃・H₂O+3H₂S→2FeS+S+4H₂O再生反应:Fe₂S3・H₂O+3/2O₂→Fe₂O3・H₂O+3S₂FeS+3/2O₂+H₂O→Fe₂O₃・H₂O+2S反应机理为硫化氢首先溶解于脱硫剂表面的水膜中并离解为HS-、S2-离子,然后HS-、S2-离子同氧化铁相互作用生成硫化铁和硫化亚铁。同时,脱硫反应自身是放热反应,Fe₂O₃・H₂O在与H2S反应的同时生产水,被反应放出的热量带走,水合氧化铁常温氧化铁的水缺失,化工脱硫剂脱硫剂表面的水膜不能完整形成,对H2S的溶解及离解能力变弱,脱硫效果降低。随着化工脱硫剂脱硫剂中水的流失,脱硫剂颗粒状物资越来越干燥,在气流的冲击及带动作用下颗粒间摩擦产生的细小粉尘随着气流逐渐被带至后段工序。综上所述,脱硫剂粉尘含量增大、脱硫效果下降均与脱硫剂中水分在反应过程中被反应放出的热量所带走有一定关系,而进入脱硫箱的经过粗净化脱水煤气中机械水含量较小,不能弥补反应过程损失的水分。
氧化铁脱硫时,沼气中的H2S在固定氧化铁(Fe2O3·H2O)的表面进行反应,沼气在脱硫器内的流速越小,接触时间越长,反应进行得越充分,脱硫效果也就越好。当化工脱硫剂脱硫剂中的硫化铁含量达到30%以上时,脱硫效果明显变差,脱硫剂不能继续使用,需要再生。将失去活性的脱硫剂与空气接触,把Fe2S3·H2O氧化析出硫磺,即可使失去活性的化工脱硫剂脱硫剂再生。由于再生时析出硫沉积在氧化铁的表面,有时竟达到氧化铁含量的2.5倍以上,所以要其中的硫分离出来,或更换新的脱硫剂。
因质子传递.H2S与MDEA(N-甲基二乙醇胺)进行的反应几平是受气膜控制的瞬时化学反应:H2S+R2NCH3=[R2NHCH3]+[HS]-。由于MDEA是一种叔胺,CO2只有与水生成碳酸氢盐后才与胺进行酸碱中和反应:CO2+H2O+R2NCH3 R2NHCH3+HCO3(2) 因为CO2和水需要缓慢的中间过程.这种反应速率上的巨大差别构成选择性吸收的基础.即MDEA在CO2存在下对H2S吸收具有较高的选择性。酸性尾气经水洗除去其中的CH3OH和HCN后进入吸收塔底部与从顶部加入的贫胺液逆流接触,脱硫后的净化气从吸收塔顶部逸出。离开吸收塔富胺溶液通过换热器与贫胺换热得到加热,然后在再生塔中再生,脱除的含H2S和CO2的再生酸气作为克劳斯装置进料,贫胺经冷却泵送至吸收塔。